Atenolol 150 Mg























































































































































































































































































Related article: than in scientific fields where postulated effects are small, such as genetic risk factors for multigenetic diseases (relative risks 1.1-1.5) [[52]7]. Modern epidemiology is increasingly obliged to target smaller effect sizes [[53]16]. Consequently, the proportion of true research findings is expected to decrease. In the same line of thinking, if the true effect sizes are very small in a scientific field, this field is likely to be plagued by almost ubiquitous false positive claims. For example, if the majority of true genetic or nutritional determinants of complex diseases confer relative risks less than 1.05, genetic or nutritional epidemiology would be largely utopian endeavors. Corollary 3: The greater the number and the lesser the selection of tested relationships in a scientific field, the less likely the research findings are to be true. As shown above, the post-study probability that a finding is true (PPV) depends a lot on the pre-study Atenolol 50 Mg Price odds (R). Thus, research findings are more likely true in confirmatory designs, such as large phase III randomized controlled trials, or meta-analyses thereof, than in hypothesis-generating experiments. Fields considered highly informative and creative given the wealth of the assembled and tested information, such as microarrays and other high-throughput discovery-oriented research [[54]4,[55]8,[56]17], should have extremely low PPV. Corollary 4: The greater the flexibility in designs, definitions, outcomes, and analytical modes in a scientific field, the less likely the research findings are to be true. Flexibility increases the potential for transforming what would be "negative" results into "positive" results, i.e., bias, u. For several research designs, e.g., randomized controlled trials [[57]18-20] or meta-analyses [[58]21,[59]22], there have been efforts to standardize their conduct and reporting. Adherence to common standards is likely to increase the proportion of true findings. The same applies to outcomes. True findings may be more common when outcomes are unequivocal and universally agreed (e.g., death) rather than when multifarious outcomes are devised (e.g., scales for schizophrenia outcomes) [[60]23]. Similarly, fields that use commonly agreed, stereotyped analytical methods (e.g., Kaplan-Meier plots and the log-rank test) [[61]24] may yield a larger proportion of true findings than fields where analytical methods are still under experimentation (e.g., artificial intelligence methods) and only "best" results are reported. Regardless, even in the most stringent research designs, bias seems to be a major Atenolol 150 Mg problem. For example, there is strong evidence that selective outcome reporting, with manipulation of the outcomes and analyses reported, is a common problem even for randomized trails [[62]25]. Simply abolishing selective publication would not make this problem go away. Corollary 5: The greater the financial and other interests and prejudices in a scientific field, the less likely the research findings are to Atenolol 200 Mg be true. Conflicts of interest and prejudice may increase bias, u. Conflicts of interest are very common in biomedical research [[63]26], and typically they are inadequately and sparsely reported [[64]26,[65]27]. Prejudice may not necessarily have financial roots. Scientists in a given field may be prejudiced purely because of their belief in a scientific theory or commitment to their own findings. Many otherwise seemingly independent, university-based studies may be conducted for no other reason than to give physicians and researchers qualifications for promotion or tenure. Such nonfinancial conflicts may also lead to distorted reported results and interpretations. Prestigious investigators may suppress via the peer review process the appearance and dissemination of findings that refute their findings, thus condemning their field to perpetuate false dogma. Empirical evidence on expert opinion shows that it is extremely unreliable [[66]28]. Corollary 6: The hotter a scientific field (with more scientific teams involved), the less likely the research findings are to be true. This seemingly paradoxical corollary follows because, as stated above, the PPV of isolated findings decreases when many teams of investigators are involved in the same field. This may explain why we occasionally see major excitement followed rapidly by severe disappointments in fields that draw wide attention. With many teams working on the same field and with massive experimental data being produced, timing is of the essence in beating competition. Thus, each team may prioritize on